Early View Article: Online published version of an accepted article before publication in the final form.

Journal Name: International Journal of Case Reports and Images (IJCRI)

Type of Article: Case Report

Title: Case of pulmonary artery aneurysm and review of literature

Authors: Aniket S. Rali, Tyler Buechler DO, Steven Whitfield

doi: To be assigned

Early view version published: April 12, 2017

Disclaimer: This manuscript has been accepted for publication. This is a pdf file of the Early View Article. The Early View Article is an online published version of an accepted article before publication in the final form. The proof of this manuscript will be sent to the authors for corrections after which this manuscript will undergo content check, copyediting/proofreading and content formatting to conform to journal's requirements. Please note that during the above publication processes errors in content or presentation may be discovered which will be rectified during manuscript processing. These errors may affect the contents of this manuscript and final published version of this manuscript may be extensively different in content and layout than this Early View Article.
TYPE OF ARTICLE: Case Report

TITLE: Case of pulmonary artery aneurysm and review of literature

AUTHORS:
Aniket S. Rali MD1,
Tyler Buechler DO2,
Steven Whitfield MD FACC3

AFFILIATIONS:
1Department of Cardiovascular Diseases, University of Kansas Medical Center
2Department of Internal Medicine, University of Kansas Medical Center
3Department of Cardiology, Kansas City Veterans Affairs Medical Center

CORRESPONDING AUTHOR DETAILS
Aniket S. Rali MD
3901 Rainbow Blvd MS 3006, Kansas City, KS 66160
Email: arali@kumc.edu

Short Running Title: Case of pulmonary artery aneurysm

Guarantor of Submission: The corresponding author is the guarantor of submission.
TITLE: Case of pulmonary artery aneurysm and review of literature

ABSTRACT

Introduction
The natural history of pulmonary artery aneurysm (PAA) is poorly understood due to the limited number of cases diagnosed antemortem [1]. Aneurysms of the proximal pulmonary artery are found in approximately 1 in 14000 postmortem examinations [2]. The pulmonary artery trunk is considered aneurysmal when the diameter exceeds 4cm [3].

Case Report
A 62-year-old woman with rheumatoid arthritis, moderate COPD (requiring supplemental oxygen), untreated obstructive sleep apnea, moderate pulmonary hypertension (mean pressure of 40 mmHg), 90 pack years smoking history and HFpEF presented to the hospital with acute on chronic hypoxemic respiratory failure. Patient was noted to have a pulmonary artery aneurysm measuring 6 cm in diameter on a computed tomographic scan obtained to rule out pulmonary embolism. We believe the mechanism of PAA in our patient to be secondary to the structural changes in elastin and collagen due to increased PA pressure leading PA dilation and subsequent aneurysm. Due to poor pulmonary reserve, patient is not considered a good candidate for surgical intervention and conservative management was opted in her case.

Conclusion
Pulmonary artery aneurysm continues to remain a poorly understood disease entity. Treatment options are often limited by late/acute presentations and multiple co-morbidities; however, advances in imaging and higher degree clinical suspicion allow for earlier identification of PAAs and allow for appropriate intervention. We hope that our case report will allow medical providers to be on the look-out for PAAs in patients with above mentioned risk factors.

Keywords: Pulmonary Artery, Aneurysms, Pulmonary Hypertension
INTRODUCTION
The natural history of pulmonary artery aneurysm (PAA) is poorly understood due to the limited number of cases diagnosed antemortem [1]. Aneurysms of the proximal pulmonary artery are found in approximately 1 in 14000 postmortem examinations [2]. The pulmonary artery trunk is considered aneurysmal when the diameter exceeds 4cm [3]. They have been associated with structural heart disease, with 50% of the postmortem cases associated with congenital heart defects, as well as, structural vascular defects, vasculitides, pulmonary hypertension, infections, trauma, and a few cases of idiopathic pulmonary artery aneurysms have been reported. [3]. Advances in diagnostic imaging have made earlier identification of PAAs easier, and allows for appropriate intervention prior to aneurysmal rupture. Here, we report a case of a patient with multiple co-morbidities and incidental pulmonary artery aneurysm.

CASE REPORT
A 62-year-old woman with rheumatoid arthritis, moderate COPD (requiring supplemental oxygen), untreated obstructive sleep apnea, moderate pulmonary hypertension (mean pressure of 40 mmHg), 90 pack years smoking history and heart failure with preserved ejection fraction (HFpEF) presented to the hospital with acute on chronic hypoxemic respiratory failure. Chest X-ray was unremarkable except for prominent pulmonary vasculature (Figure 1-A). A computed tomographic (CT) scan showed no acute pulmonary embolism, pulmonary fibrosis or rheumatoid pleurisy. However, a 6.0 cm dilation of the main pulmonary artery was noted (Figure 1-B, C, D). Right Heart Catheterization performed two days after the CT scan demonstrated mean RA pressure of 10 mmHg, RV pressure of 57/12 mmHg, PA pressure of 59/31 with mean pressure of 40 mmHg. Mechanism of patient’s pulmonary artery aneurysm was believed to be multi-factorial including pulmonary hypertension, chronic emphysematous changes, untreated obstructive sleep apnea and heart failure.
Due to poor pulmonary reserve, patient is not considered a good candidate for surgical intervention and conservative management was opted in her case.

DISCUSSION

Pulmonary Artery Aneurysms are infrequently diagnosed ante-mortem and are a rare entity in general with less than 200 cases reported [4]. Congenital heart diseases are most commonly associated with PAA. Two studies, looking at proximal PAAs at autopsy found the incidence of congenital heart disease to be around 56% [3]. The most common congenital defects include patent ductus arteriosus, ventricular septal defects and atrial septal defects [5]. These entities increase the shear stress on the pulmonary artery due to left to right shunt, causing weakness in the vascular wall. The remaining causes of PAA include infectious, traumatic, iatrogenic and idiopathic causes. Of the acquired causes, pulmonary hypertension was noted in 66% of patients [3]. It has been proposed that structural changes in elastin and collagen secondary to increased PA pressure leads to PA dilatation and subsequent aneurysm [5]. We believe this to be the mechanism of PAA in our patient as well. Infectious etiologies have classically been associated with syphilis and tuberculosis [6]. When pulmonary tuberculosis is the cause, patients develop a Rasmussen aneurysm, which is an inflammatory pseudo-aneurysmal dilatation of a PA branch adjacent to a tubercular cavity [6]. Iatrogenic causes include Swan-Ganz catheter insertion, chest tube insertion, surgical resection, and catheter based pulmonary angiography [5]. While the natural history of PAA is poorly understood, PAAs represent a life threatening disease if they progress to rupture or dissection. However, not all aneurysms progress to the rupture stage [5]. The risk of rupture is proportional to the stress placed on the aneurysm which is affected by pressure, wall thickness, and radius of the vessel [3]. In one systemic review, out of 66 case reports on PA dissection and rupture, 62% of cases were associated with high pressure [4]. Furthermore, the duration of elevated PA pressure is also an important consideration. Aneurysms seen in conjunction with congenital heart defects show the most unexpected deaths and most PA dissections [4]. In the absence of elevated pulmonary pressures from pulmonary valve defects, pulmonary hypertensions, or left
to right shunt, the risk of aneurysmal rupture appears to be very small [3]. A PA
diameter greater than 5.5 cm in conjunction with high pulmonary artery pressure was
associated with more sudden unexpected death [4]. The systemic review by
Duijnhouwer et al., classifies high risk aneurysms for rupture or dissection as
aneurysms with: diameter > 7.5 cm, PA pressure of 50mmHg, and aneurysmal
growth rate >2mm/year [4]. Although our patient did not have any of these high risk
features, her on-going contributors of increased stress on the aneurysm, including
untreated sleep apnea, COPD and moderate pulmonary hypertension, placed her at
an increased risk of PAA rupture or dissection.

Optimal treatment for PAAs remains unclear and treatment guidelines have not been
established because of low disease incidence. Treatment can be either surgical
intervention, management of underlying pulmonary hypertension or conservative
management [3]. One study recommended surgical repair if aneurysms were larger
than 6.0 cm [3]. Surgical interventions include aneurysmorrhaphy or arterioplasty,
pericardial patch reconstruction, and interposition grafting [3]. Improvement in
endovascular techniques have allowed for less invasive approaches that produce
less damage to the lung parenchyma; recently, steel coil embolization and balloon
embolization have been reported [5]. Patients with pulmonary hypertension should
be treated appropriately directed at the underlying cause to lower pulmonary artery
pressures and subsequently the shear stress on the pulmonary arterial wall. Given
her co-morbidities and poor lung reserve, our patient was not deemed to be a
surgical candidate and hence after discussion with the patient and her family, we
opted for conservative management.

CONCLUSION
Pulmonary artery aneurysm continues to remain a poorly understood disease entity.
Treatment options are often limited by late/acute presentations and multiple co-
morbidities; however, advances in imaging and higher degree clinical suspicion allow
for earlier identification of PAAs and allow for appropriate intervention. We hope that
our case report will allow medical providers to be on the look-out for PAAs in patients
with above mentioned risk factors.
CONFLICT OF INTEREST

Authors have no conflicts of interest to declare in publishing of this case report.

AUTHOR’S CONTRIBUTIONS

Aniket S. Rali – Background research, and writing and revision of the manuscript.

Tyler Buechler – Writing and revision of the manuscript.

Steven Whitfield – Writing and revision of the manuscript.

REFERENCES

FIGURE LEGEND

Figure 1: A: Chest x-ray showing the prominent pulmonary vasculature. B-D: Computed Tomographic scan showing various views of the pulmonary artery dilatation of 6 cm.

FIGURE

Figure 1: A: Chest x-ray showing the prominent pulmonary vasculature. B-D: Computed Tomographic scan showing various views of the pulmonary artery dilatation of 6 cm.