Early View Article: Online published version of an accepted article before publication in the final form.

Journal Name: International Journal of Case Reports and Images (IJCRI)

Type of Article: Case Report

Title: Mesenchymal chondrosarcoma: An unusual lump in posterior maxilla

Authors: S Ravi Raja Kumar, Anuradha A, Namineni Kiran Kumar, Horatti Puneeth Kuberappa, Venkata Raju K, Mahanthi Vijayalakshmi

doi: To be assigned

Early view version published: February 7, 2017

Disclaimer: This manuscript has been accepted for publication. This is a pdf file of the Early View Article. The Early View Article is an online published version of an accepted article before publication in the final form. The proof of this manuscript will be sent to the authors for corrections after which this manuscript will undergo content check, copyediting/proofreading and content formatting to conform to journal’s requirements. Please note that during the above publication processes errors in content or presentation may be discovered which will be rectified during manuscript processing. These errors may affect the contents of this manuscript and final published version of this manuscript may be extensively different in content and layout than this Early View Article.
TYPE OF ARTICLE: Case Report

TITLE: Mesenchymal chondrosarcoma: An unusual lump in posterior maxilla.

AUTHORS:
S Ravi Raja Kumar¹,
Anuradha A²,
Namineni Kiran Kumar³,
Horatti Puneeth Kuberappa⁴,
Venkata Raju K⁵,
Mahanthi Vijayalakshmi⁶

AFFILIATIONS:
¹MDS, Professor, Department of Oral and Maxillofacial Surgery, St Joseph Dental
College, Eluru, Andhra Pradesh, India, Email id- rrkomfs@gmail.com
²MDS, Professor, Department of Oral Pathology and Microbiology, St Joseph Dental
College, Eluru, Andhra Pradesh, India, Email id- anuradhaundavalli@yahoo.com
³MDS, Professor and HOD, Department of Dentistry, Rajiv Gandhi Institute of
Medical Sciences, Ongole, Andhra Pradesh, India, Email id –
drnamineni@yahoo.com
⁴MDS, Senior Lecturer, Department of Oral Pathology and Microbiology, St Joseph
Dental College, Eluru, Andhra Pradesh, India, Email id- Puneeth.hk19@gmail.com
⁵MDS, Professor, Department of Oral and Maxillofacial Surgery, Klr’s Lenora institute
of dental sciences, Rajanagaram, Andhra Pradesh, India. Email id-
Kesirajuomfs@gmail.com
⁶MDS, Senior Lecturer, Department of Oral Pathology and Microbiology, Klr’s Lenora
institute of dental sciences, Rajanagaram, Andhra Pradesh, India. Email id—
vijji.mahanthi@gmail.com

CORRESPONDING AUTHOR DETAILS
Dr. Puneeth Kuberappa Horatti
Short Running Title: Mesenchymal chondrosarcoma of posterior maxilla

Guarantor of Submission: The corresponding author is the guarantor of submission.
TITLE: Mesenchymal chondrosarcoma: An unusual lump in posterior maxilla

ABSTRACT

Introduction

Mesenchymal Chondrosarcoma (MC) is an uncommon, slow growing malignant tumor which is a rare variant of Chondrosarcoma (CS), having a predilection for the maxillofacial skeleton; less often involves the soft tissue sites in the head and neck.

Case Report

We report an unusual case of Mesenchymal Chondrosarcoma on posterior palate in a 45 year old male patient, which was previously diagnosed as pleomorphic adenoma in private clinic.

Conclusion

MC shows varied clinical and radiographic features, with occurrence of this lesion in unusual locations like posterior region of jaws which may lead to error in clinical diagnosis and early treatment as it has high affinity for recurrence and delayed metastasis.

Keywords: Cartilage tumor, Mesenchymal chondrosarcoma, Posterior maxilla, recurrent lesion.
INTRODUCTION
Mesenchymal Chondrosarcoma (MC) is an uncommon, slow growing malignant tumor which is a rare variant of Chondrosarcoma (CS), having a predilection for the maxillofacial skeleton; less often involves the soft tissue sites in the head and neck. They usually occur in middle aged individuals, but are rare in young patients, with predilection for anterior portion of maxilla [1]. The tumor is unique due to high tendency for late recurrence and delayed metastasis to lung, bone, and lymph nodes [2]. Histopathologically, it is characterized by a biphasic pattern consisting of hyaline cartilage mixed with undifferentiated pleomorphic mesenchymal cells [1,3]. To the best of our knowledge, only 17 cases have been reported in English literature affecting posterior maxillary region. Thus we report an unusual case of Mesenchymal Chondrosarcoma on posterior palate in a 45 year old male patient.

CASE REPORT
A 45 year old male patient presented with painless swelling in the left palatal region present since 4 months. Patient gave a history of an excision of lesion in posterior left palatal region 9 months ago, which was diagnosed as pleomorphic adenoma in a private clinic. In duration of 4 months, patient again noticed a swelling in the site of previous excision. On clinical examination a well-defined solitary swelling of size approximately 3x1.5 cms extending from distal aspect of 21 to distal aspect of 26 on the left buccal alveolar ridge anteroposteriorly and medio-laterally extending from palatine gingiva to mid palatine raphe in relation to 22 to 26. The surface appears to be lobulated and mucosa over the growth appeared normal (Figure 1a and 1b). Computed tomography and orthopantomogram showed no definite changes, whereas Paranasalsinus (PNS) view showed haziness in maxillary sinus area. Magnetic resonance imaging (MRI) and Positron emission tomography (PET) scan revealed a well-defined mass seen on the left side of the buccal vestibule extending into the maxillary sinus (Figure 2a and 2b). Based on clinical and radiographic features provisional diagnosis of recurrent pleomorphic adenoma was given.
The patient was advised to undergo surgery, and the tumor was resected by subtotal maxillectomy under general anesthesia. The excised specimen was sent for histopathological examination which revealed focal ulceration of the lining epithelium. The stroma revealed biphasic pattern (Fig 3a) with areas of relatively mature cartilage formation with focal areas showing calcification of mature cartilage and areas of primitive spindle to round shaped mesenchymal cells. Primitive appearing mesenchymal cells had scanty cytoplasm, eccentric placed irregular vesicular nuclei and exhibited moderate pleomorphism with variable mitotic activity (Figure 3b). Focally hemangiopericytoma like vascular pattern was evident (Figure 3c). Transitional zone between the chondroid foci and the mesenchymal component was more plodding but not sharp.

Immunohistochemical study was done and the proliferating chondrocytes showed nuclear positivity with S100 protein (Figure 4a) and were negative for Pancytokeratin (Figure 4b).

Correlating with the clinical, radiographical, histopathological and immunohistochemical findings the case was diagnosed as Mesenchymal Chondrosarcoma. The present case was followed for a period of 1 year with no post-operative recurrence.

DISCUSSION

Chondrosarcoma is 3rd most common primary malignancy of bone after myeloma and osteosarcoma [4]. MCs are rare biphasic tumor with areas comprising of spindle cell mesenchyme interspersed with areas of chondroid differentiation accounting for only 1% of all CS [5].

MCs may develop from pluripotential mesenchymal stem cells and can differentiate into angioblastic, fibroblastic or cartilaginous structures [3], but precise pathogenesis and biological behavior is not fully understood in head and neck MC. But recent studies have shown the identification of new gene HEY1-NCOA2 fusion which appears to be diagnostic, but missing in other subtype of CS [6].

MCs arise from soft tissue or bone in the ratio of 1:2 to 1:6 [3]. In head & neck region commonly involved extra skeletal sites are orbit, meninges & sinonasal tract, whereas intraskeletally anterior maxilla is the most common site [3], where
preexisting nasal cartilage is present [6,7], others sites in descending order of frequency of involvement are body of the mandible, the ramus, the nasal septum and paranasal sinuses [8]. The present case was reported in left posterior maxillary region involving both buccal and palatal areas.

Most of CS occurs in 3rd – 6th decade of life, where as MC variant occurs in younger age group i.e. 2nd -3rd decade of life in 70% of cases, but few cases have been in reported between 5-7th decade [5,8], where present case also falls in 5th decade. Concerning sex prevalence there some disagreement, as few authors’ state male predominance [9] and few state female predominance [8].

MCs show no specific clinical signs and symptoms. The predominant symptom is usually a painless mass or swelling (53%) [5], as in the present case. However, other reported symptoms are nasal obstruction (32%), epitaxis (32%) tooth mobility (24%) [6] and rarely, lymphadenopathy and neurological disturbances such as facial paresthesia and lip paresis can also occur [1,3].

The radiographic appearance of MC of jaws are not classic, usually exhibit features of a malignancy, consisting of osteolytic process with poorly defined borders. The ill-defined radiolucent area contains scattered foci of neoplastic cartilaginous tissue [3,8]. The lesion may also cause symmetrical widening of the periodontal ligament space of involved teeth [8,10], but was not evident in the present case.

Histologically, depending on the cellularity, nuclear staining (hyperchromasia) of the tumor cells and size of the nuclei, chondrosarcomas have been graded into low, intermediate and high grade [5]. Previously, the same case was diagnosed as pleomorphic adenoma due to the presence of chondroid area in the background of myxomatous stroma and also due to inadequate biopsy taken initially might have missed the characteristic areas of MC.

Histopathologically, MC shows characteristic biphasic pattern. Highly cellular undifferentiated/primitive spindle cells is similar to small cell tumor, but presence of islands of chondroid differentiation help in making proper diagnosis, but difficulty arises with small biopsy sample [6,8]. Most of the MC’s show rich vascular component, as seen in the present case, often confused with hemangiopericytoma but hemangiopericytoma lacks hyaline cartilage component, additionally, it is positive for CD34.
Histologically, the lesion should be differentiated from small cell osteosarcoma and PNET/ Ewing sarcoma, malignant peripheral neuroectodermal tumor, synovial sarcoma (poorly differentiated type), dedifferentiated CS [11, 12].

Ewing’s sarcoma usually contains moderate amount of cytoplasmic glycogen and presence of t(11;22) but lacks cartilaginous component, reticulin meshwork and vascular pattern of MC. Malignant peripheral neuroectodermal tumor contains more pleomorphic small cells than in MC and presence of rosettes. Tumors cells of MC and malignant peripheral neuroectodermal tumors are positive for CD99 and S100 but stromal cells of MC are negative for S100. Small cell osteosarcoma can be differentiated from MC by the presence of osteoid in lace like pattern. Though MC contains bone, it is not produced directly by the stromal cells but formed by endochondral ossification of cartilage islands [3, 12]. Immunohistochemically, the small cell components are positive for vimentin, CD99, and Leu7 but not for S-100 protein; latter is found instead in chondroid areas [13].

Dedifferentiated CS shows large and highly pleomorphic spindle cells with atypical nuclei in contrast to uniform nuclei of small cells of MC. In dedifferentiated CS, there is sharp margin between both components but in MC both are admixed. Monophasic synovial sarcoma (poorly differentiated type) can be separated from mesenchymal chondrosarcoma by the absence of hyaline cartilage. Absences of keratins, especially CK7, and EMA and t(x;18) can differentiate mesenchymal chondrosarcoma from synovial sarcoma [12]. Hemangiopericytoma is distinguished from MC by its lack of cartilage and positive immunohistochemical staining for CD34 [5]. The characteristic expression of type II collagen in matrix of MC helps in differentiation from other small cell sarcomas [6].

In relation to the histological diagnosis, immunohistochemical analysis is of great helpful. Immunohistochemistry is advised for difficult cases. Chondroid areas are positive for S-100 protein and vimentin [3, 5].

Wide surgical excision is the mainstay treatment for chondrosarcoma in the jaw bones [2]. These tumors are radio resistant, so chemotherapy can be used as an adjuvant therapy after wide surgical excision [7]. Our case was treated with wide surgical excision and followed up for 3 years with no recurrence.
The prognosis of the chondrosarcoma of the jaws is poor as compared to that of long bones. The cause of death is usually by direct extension of tumor into the base of skull, and also through distant metastasis, primarily to lungs and bones. The prognosis is good for low and intermediate grade chondrosarcomas. Especially the maxillary (0.7% of whole body tumor) and mandibular locations of the tumor have documented inferior prognosis [13].

Fu and Perzin in 1974 described three prognostic factors: location and extent of the lesion, adequacy of surgical therapy, and degree of differentiation of the tumor. Few studies have shown 5 year survival rate up to 40-60% and few showed recurrence even after 10 to 20 years [1]. Hence adequate treatment and a lifelong follow up after surgery is recommended for patients with MC’s of the maxillofacial region.

CONCLUSION

MC shows varied clinical and radiographic features, with occurrence of this lesion in unusual locations like posterior region of jaw which shows ill-defined feature and ossification which may lead to error in clinical and histopathological diagnosis and delay in early treatment. It is an aggressive neoplasm with high penchant for recurrence and delayed metastasis. Hence, patient should be kept under long term follow up.

AUTHOR’S CONTRIBUTIONS

S Ravi Raja Kumar
Group1 - Conception and design, Analysis and interpretation of data
Group 2 - Drafting the article, Critical revision of the article
Group 3 - Final approval of the version to be published

Anuradha A
Group1 - Acquisition of data, Analysis and interpretation of data
Group 2 - Drafting the article, Critical revision of the article
Group 3 - Final approval of the version to be published

Namineni Kiran Kumar
Group1 - Analysis and interpretation of data
Horatti Puneeth Kuberappa
Group 1 - Conception and design, Acquisition of data, Analysis and interpretation of data
Group 2 - Drafting the article, Critical revision of the article
Group 3 - Final approval of the version to be published

Venkata Raju K
Group 1 - Acquisition of data
Group 2 - Drafting the article, Critical revision of the article
Group 3 - Final approval of the version to be published

Mahanthi Vijayalakshmi
Group 1 - Acquisition of data, Analysis and interpretation of data
Group 2 - Drafting the article
Group 3 - Final approval of the version to be published

REFERENCES:

FIGURE LEGENDS

Figure 1: (A and B) - Intraoral photomicrograph showing lobulated growth on left buccal and palatal region.

Figure 2: (A and B) - MRI and PET scan showing a well-defined radiodense mass on the left side of the buccal vestibule extending into the maxillary sinus.
Figure 3: (A) - Photomicrograph of H and E stained section showing bimorphic patterns of islands of cartilage surrounded by primitive mesenchymal cellular areas. (B) - Photomicrograph of H and E section showing primitive spindle to oval shaped pleomorphic mesenchymal cells admixed with calcified chondroid areas with atypical chondrocytes. (C) - Photomicrograph of H and E section showing mesenchymal cells arranged around blood vessels.

Figure 4: (A and B) - Photomicrograph of IHC stain showing S-100 positive proliferative chondrocytes (A) and negative stained for Pancytokeratin (B).

FIGURES

Figure 1: (A and B) - Intraoral photomicrograph showing lobulated growth on left buccal and palatal region.
Figure 2: (A and B) - MRI and PET scan showing a well-defined radiodense mass on the left side of the buccal vestibule extending into the maxillary sinus.
Figure 3: (A) - Photomicrograph of H and E stained section showing bimorphic patterns of islands of cartilage surrounded by primitive mesenchymal cellular areas. (B) - Photomicrograph of H and E section showing primitive spindle to oval shaped pleomorphic mesenchymal cells admixed with calcified chondroid areas with atypical chondrocytes. (C) - Photomicrograph of H and E section showing mesenchymal cells arranged around blood vessels.
Figure 4: (A and B) - Photomicrograph of IHC stain showing S-100 positive proliferative chondrocytes (A) and negative stained for Pancytokeratin (B).