Cyclophosphamide for suspected primary angiitis of the central nervous system in a patient with human immunodeficiency virus: A case report

Martha M. Rumore, Samantha Su, Jake Pellinen

ABSTRACT

Introduction: Central nervous system (CNS) vasculitis is rare, including in human immunodeficiency virus (HIV), occurring in less than 1% of patients. Systemic vasculitis affecting the CNS is termed secondary CNS vasculitis, whereas primary CNS vasculitis, referred to as primary angiitis of the CNS (PACNS) refers to an extremely rare disease specifically confined to the CNS. Only some cases of PACNS in HIV patients have been reported in literature.

Case Report: We report a case of a 46-year-old female with HIV who developed probable primary CNS vasculitis, which was treated with intravenous cyclophosphamide and glucocorticoids for both induction and maintenance. A systematic literature review regarding PACNS and its therapeutic management is presented in this report. There were no clinical trials for PACNS. Based on the American Academy of Neurology (AAN) classes of evidence for therapeutic effectiveness, most data is of intermediate or weak strength.

Conclusion: This case highlights diagnostic and clinical features of PACNS and provides an overview of the current literature regarding pharmacotherapy. Further case reports and additional studies are needed.
Cyclophosphamide for suspected primary angiitis of the central nervous system in a patient with human immunodeficiency virus: A case report

Martha M. Rumore, Samantha Su, Jake Pellinen

ABSTRACT

Introduction: Central nervous system (CNS) vasculitis is rare, including in human immunodeficiency virus (HIV), occurring in less than 1% of patients. Systemic vasculitis affecting the CNS is termed secondary CNS vasculitis, whereas primary CNS vasculitis, referred to as primary angiitis of the CNS (PACNS) refers to an extremely rare disease specifically confined to the CNS. Only some cases of PACNS in HIV patients have been reported in literature. Case Report: We report a case of a 46-year-old female with HIV who developed probable primary CNS vasculitis, which was treated with intravenous cyclophosphamide and glucocorticoids for both induction and maintenance. A systematic literature review regarding PACNS and its therapeutic management is presented in this report. There were no clinical trials for PACNS. Based on the American Academy of Neurology (AAN) classes of evidence for therapeutic effectiveness, most data is of intermediate or weak strength. Conclusion: This case highlights diagnostic and clinical features of PACNS and provides an overview of the current literature regarding pharmacotherapy. Further case reports and additional studies are needed.

Keywords: Primary angiitis, PACNS, HIV, Cyclophosphamide, Primary CNS vasculitis

INTRODUCTION

Primary angiitis of the CNS (PACNS), also referred to as primary CNS vasculitis (PCNSV), CNS vasculitis, and previously, cerebral or primary granulomatous angiitis, is an extremely rare but serious disease with an incidence of 2.4 cases per one million person-years [1–3]. PACNS, unlike other vasculitides, is confined to the CNS. HIV is associated with various systemic vasculitides, from small to large vessel, immune-mediated to infectious. However, PACNS is less common than any systemic vasculitis in both the general population as well as in patients with HIV [4]. After an extensive literature review only a few case reports of PACNS in HIV patients have been identified [5, 6]. Further, in view of diagnostic advances and updated classification, it is uncertain if these cases represent true PACNS [7].
PACNS remains a diagnostic challenge as presentation varies from patient to patient and can range from strokes to chronic headaches. It occurs with the same frequency in men and women with a median age of 50 years and may occur in both adult and pediatric patients [8, 9]. However, the presentation and treatment in pediatric patients differs from that of adults [2, 8]. Therefore, this review is limited to adult patients with PACNS.

The disease is characterized by inflammatory infiltrates composed of lymphocytes, together with necrosis limited to the medium and small vessels of the CNS. The Calabrese diagnostic criteria were developed over 20 years ago, however, MRI scan and pathology are the best diagnostic tools as clinical findings are non-specific and blood tests are usually normal [10]. Recently, subtypes of PACNS have been identified; however, classification remains a challenge [11]. Morbidity and mortality are associated with cerebral infarctions and involvement of large vessels. The prognosis has improved since 1983, when Cupps et al. reported success using a combination of cyclophosphamide and glucocorticoids [12].

Today, treatment includes glucocorticoids and cyclophosphamide, as it remains difficult to predict which patients would do well with glucocorticoid monotherapy [3, 12]. Cyclophosphamide has been shown to improve survival [12]. The optimal duration of treatment is unknown for this off-label use. Outcome is variable with some patients fully recovering and others experiencing permanent neurological damage. Toxicities associated with cyclophosphamide include urothelial toxicity such as cystitis, hematuria, bladder cancer, and infertility. Glucocorticoid toxicity includes bone loss, osteoporosis, diabetes mellitus, and Cushing’s syndrome.

In patients intolerant to cyclophosphamide or those who respond poorly to the drug, rituximab has been used [2, 13]. Some patients receive weekly intramuscular methotrexate maintenance therapy. Other alternatives include azathioprine, chlorambucil, toclizumab, cyclosporine, aspirin, tumor necrosis factors (infliximab and etanercept), and mycophenolate mofetil [1, 14–16].

We report a case of probable PACNS in a patient with HIV treated successfully with cyclophosphamide and pulse corticosteroids. Additionally, we conducted a systematic literature review for PACNS and evaluated the strength of the evidence using modified American Academy of Neurology (AAN) classes of evidence for therapeutic effectiveness criteria [17].

CASE REPORT

A 46-year-old female was admitted for headache, vertigo, and an altered mental state. For several days prior to presentation, she developed increasing confusion and forgetfulness. She showed anterograde amnesia and was not oriented to day or time. Her past medical history included type 2 diabetes mellitus, HIV, hypertension, depression, and vertigo. Her home medications were metformin 500 mg twice daily, insulin glargine 10 units SQ nightly at bedtime, benazepril 20 mg once daily, amlodipine 10 mg once daily, escitalopram 10 mg once daily, atorvastatin 20 mg once daily, dolutegravir 50 mg once daily, lamivudine-abacavir 300 mg/600 mg once daily, and sulfamethoxazole-trimethoprim 800 mg/160 mg once daily. She also had a tooth extraction and a cold several days prior to the onset of her presenting symptoms. Her social history was positive for former illicit substance abuse. In the emergency department, she received acetaminophen 650 mg and meclizine 25 mg for symptom management. Her initial coagulation studies, complete blood count, and chemistries were unremarkable except for mild hyperglycemia (118 mg/dL, N 74–106), hyperbilirubinemia (2.4 mg/dL, N 0.2–1.3), and an ESR of 48 mm/hr (N 0–24). The patient’s CD4 count was 1026 cells/mm³, hemoglobin A1C was 7.8, and vitamin B12 and TSH were within normal limits. At this time the patient’s weight was 93 kg. Her initial neurologic evaluation was non-focal apart from altered mentation. She was admitted while a broad infectious and inflammatory workup commenced.

A non-contrast computed tomography (CT) scan of the head revealed a right occipital hypodensity with minimal mass effect on the adjacent brain parenchyma and no evidence of midline shift, most consistent with subacute infarct, and was otherwise unremarkable appearing.

Subsequent brain magnetic resonance imaging (MRI) scan with and without contrast revealed acute infarcts in multiple vascular territories, including infarcts in the right middle cerebral artery distribution, left paramedian pons, bilateral occipital lobes, as well as punctate infarcts in the posterior left frontal lobe (Figures 1 and 2). Vascular imaging revealed severe proximal basilar artery stenosis, bilateral distal vertebral artery stenosis, and moderate bilateral internal carotid artery cavernous stenosis. A lumbar puncture was performed and a cerebrospinal fluid (CSF) analysis was unrevealing apart from lymphocytosis. Though a broad infectious workup was negative, her clinical status worsened, and she was started on cyclophosphamide for presumed CNS vasculitis. Subsequent MRI scan revealed new infarcts in the inferior right cerebellum in the distribution of the right posterior inferior cerebellar artery, as well as in the splenium of the corpus callosum, expansion of infarcts in the right paramedian pons and corpus callosum, and hemorrhagic conversion of the right occipital infarct.

A conventional angiogram was consistent with vasculitis, and even though a brain biopsy was performed, it did not capture a representative area of inflammation that was seen on MRI. While tissue diagnosis is considered the gold standard, repeat biopsy was not pursued, as the risks did not outweigh the benefits given the clinical context, high pretest probability, and her response to treatment. Therefore, she was diagnosed with probable PACNS based on her fulminant course with multiple successive strokes in the
setting of lymphocytic CSF pleocytosis, conventional angiogram consistent with vasculitis, and absence of systemic vasculitis. Furthermore, she was stabilized after prolonged course of high dose steroids with additional pulse dose cyclophosphamide. Additionally, her HIV was controlled, with a CD4 count of 1026 cells/mm³, and she was kept on daily pneumocystis jiroveci prophylaxis with sulfamethoxazole-trimethoprim.

At the time of submission of this report, the patient had received three cycles of cyclophosphamide therapy. During the first cycle the patient received intravenous cyclophosphamide 1000 mg after hydration with 0.9% NS, and premedication with ondansetron 16 mg IVPB for nausea. The patient was started on prednisone 80 mg once daily at the start of cyclophosphamide therapy, which was continued upon discharge. Approximately four weeks later, the patient was admitted again for the second cycle of the same regimen. An MRI scan during this admission showed stable infarcts compared to baseline. The patient received the same premedication and intravenous hydration as in cycle one. Approximately four weeks after the second cycle, the patient was admitted for cycle three, consisting of the same regimen as before. At this time she was deemed to be neurologically stable and responding well to treatment.

DISCUSSION

Central nervous system vasculitis can be classified as primary or secondary [3, 18, 19]. It is primary when there is no other involvement than the CNS and secondary when it occurs with other inflammatory or systemic conditions such as connective tissue diseases, autoimmune or infectious diseases such as polyarteritis nodosa, systemic lupus erythematosus, varicella zoster, and HIV [9, 18]. The precise causes and pathogenesis of PACNS are unknown.

Our patient was HIV positive but had no evidence of systemic vasculitis or systemic symptoms such as fever, weight loss, or malaise. Furthermore, there was no alternative etiology to PACNS. HIV itself can cause vasculitis, though this occurs as a consequence of opportunistic infections such as cytomegalovirus, meningitis, and mycobacterium avium [4, 9]. The vasculitis is thought to be mainly the result of an immune response. A pathogenic mechanism in HIV may be interaction of T cell mediated cells, superantigens, adhesion molecules, immune complexes, cytokines, and growth factors [4, 20].

Secondary CNS vasculitis such as infections (e.g. neurosyphilis), systemic vasculitis, and connective tissue disease should be ruled out in cases of suspected PACNS. Our patient did not have clinical or laboratory evidence of such processes, e.g. the anemia, thrombocytopenia, elevated liver enzymes, and low complement typically associated with systemic vasculitis [21]. Infectious causes of vasculitis were ruled out prior to placing the patient on cyclophosphamide, which is immunosuppressive.

Diagnostic criteria for PACNS were suggested in 1987 by Calabrese and Mallek [21]. The differential diagnosis is broad and includes reversible cerebral vasocostriction syndromes and systemic vasculitis [10, 22]. Reversible vasocostriction syndrome may be associated with medications, hypertension, eclampsia or the postpartum period, and is the most common mimicker of PACNS. Other mimickers are listed in Table 1 [3, 21, 22–26].

Our patient presented with cognitive impairment and headache, which constitute the two most common

Figure 1: MRI brain diffusion imaging (DWI left, ADC on right) revealing diffusion-positive strokes in multiple vascular territories.

Figure 2: MRI brain (axial FLAIR slices) revealing multiple areas of hyperintensity.
presenting symptoms, however, they are non-specific and made diagnosis difficult. Focal neurological deficits a common presenting symptom due to acute ischemic events, were absent on initial presentation. Subsequent cerebrovascular imaging was consistent with cerebral vasculitis. Clinical features of PACNS are listed in Table 2 [3, 10, 24, 25, 27–29].

Our patient had involvement of the vertebral and basilar arteries, a feature commonly reported with CNS vasculitis [15]. Multiple ischemic infarctions visible on MRI, which occur in 53% of patients, and intracranial hemorrhages which occur in 9% of cases, were found in our patient as well [1, 3]. Hemorrhage is caused by vasculitis-induced blood vessel weakening or aneurysm formation [24]. Thus, our patient can be included in the most ominous subset of patients, i.e., rapidly progressive PACNS.

A literature search was performed to retrieve all publications describing medications used to treat PACNS. The search was conducted in PubMed (1966–March 2016), EMBASE (1980–2016), Ovid and the Cochrane Library, and Google Scholar using the search terms “primary angiitis”, “primary vasculitis”, “PACNS”, “PCNSV”, and “primary cerebral or granulomatous vasculitis”. No language or date restrictions were considered. The FDA website was utilized for identification and review of the latest prescribing information [30]. Included were randomized controlled trials, cohort and case control studies, professional guidelines or recommendations, case reports, case series, and studies conducted on small numbers of patients. Preclinical and chemical screening studies, review articles (other than Meta-analysis or systematic reviews), letters to the editor, editorials, and commentaries were excluded. For each article identified, a second search was conducted both in the databases above as well as by reviewing the bibliography to locate additional articles. We included all reports of patients more than or equal to 18-year-old.

To identify the strength of the evidence regarding treatment for PACNS and evaluate evidence quality, a modified AAN level of evidence classification for therapeutic intervention was employed [17] using a three-tiered system (i.e., strong, intermediate, weak). Strong evidence involved prospective randomized controlled trials or prospective matched group cohort studies directly relevant or inclusion in a Guideline. Intermediate evidence involved conflicting data in randomized clinical trials or cohort studies, case-control studies, evidence in the form of small or pilot trials or case series, or consensus recommendation in the absence of relevant clinical trials and better evidence than case reports. Weak evidence involved isolated or anecdotal case reports, expert opinion or where strong or intermediate evidence failed to include dosages, relapse details, or patient outcomes.

Excluded was secondary vasculitis use or narrative review articles or where the only available literature regarding the use pertained to pre-clinical studies.

Table 1: PACNS- The Great Masquerader- Conditions Mimicking PACNS

<table>
<thead>
<tr>
<th>Infections Associated With CNS Vasculitis</th>
<th>Systemic Vasculitides</th>
<th>Connective Tissue Diseases</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral (Human immunodeficiency virus, varicella-zoster, cytomegalovirus)</td>
<td>Lymphoma (especially Hodgkin’s disease)</td>
<td>Neuropsychiatric lupus</td>
<td>Drug-induced cerebral vasculitis—tiouracil, allopurinol, minocycline, penicillamine, carbamazepine, phenytoin, methotrexate, isotretinoin, heroin, cyclosporine, sympathomimetics such as cocaine, ergotamine, ephedrine, amphetamine, oxymetazoline, phenylpropanolamine)</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>Polyarteritis nodosa</td>
<td>Mixed connective tissue disease</td>
<td>Graft versus host disease</td>
</tr>
<tr>
<td>Borrelia burgdorferi</td>
<td>Henoch-Schönlein purpura</td>
<td>Dermatomyositis</td>
<td></td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>Wegener’s granulomatosis</td>
<td>Storage diseases</td>
<td></td>
</tr>
<tr>
<td>Rickettsia spp. (Rocky Mountain spotted fever, typhus)</td>
<td>Antineutrophil cytoplasmic antibody-associated vasculitis</td>
<td>Systemic lupus erythromatosis</td>
<td></td>
</tr>
<tr>
<td>Bartonella spp.</td>
<td>Hypocomplementemic urticarial vasculitis</td>
<td>Cogan syndrome</td>
<td></td>
</tr>
<tr>
<td>Fungal infections (aspergillosis, coccidiomycosis, candidiasis)</td>
<td>Kawasaki disease</td>
<td>Behçet disease</td>
<td></td>
</tr>
<tr>
<td>Subarachnoid cysticercosis</td>
<td>Giant cell arteritis</td>
<td>Churg-Strauss syndrome</td>
<td></td>
</tr>
<tr>
<td>Neurosyphilis</td>
<td>Takayasu’s arteritis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Moyamoya syndrome
Reversible posterior leukoencephalopathy syndrome
Degas disease
Fabry's disease
Lipohyalinosis
Atypical multiple sclerosis
Call—Fleming syndrome
Migrainous vasospasm
Whipple's disease
Rasmussen encephalitis
Radiation vasculopathy
Fibromuscular dysplasia
Sneddon syndrome
MELAS (Mitochondrial encephalomyopathy, lactic acidosis, stroke)
Amyloid angiopathy
Pseudoxanthoma elasticum
Postpartum angiopathy
Optic neuritis
Susac syndrome
CNS malignancy-related angiitis
Hodgkin’s and non-Hodgkin’s lymphoma
Intracranial dissection
N-methyl-o-aspartate receptor-mediated encephalitis

Table 2: Clinical and Diagnostic Characteristics of PACNS

<table>
<thead>
<tr>
<th>Signs & Symptoms, Lab and Imaging Findings</th>
<th>Percentage</th>
<th>Our Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>63</td>
<td>+</td>
</tr>
<tr>
<td>Cognitive Impairment</td>
<td>50</td>
<td>+</td>
</tr>
<tr>
<td>Hemiparesis</td>
<td>44</td>
<td>-</td>
</tr>
<tr>
<td>Stroke</td>
<td>40</td>
<td>+</td>
</tr>
<tr>
<td>Aphasia</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>Transient ischemic attacks</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>Ataxia</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>Seizures</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Dysarthria</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Blurred or decreased visual acuity</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
<td><10%</td>
<td>+</td>
</tr>
<tr>
<td>Amnesic syndrome</td>
<td><10%</td>
<td>+</td>
</tr>
<tr>
<td>Lymphomonocytic pleocytosis</td>
<td>>90%</td>
<td>+</td>
</tr>
<tr>
<td>Brain biopsy evidence</td>
<td>75%</td>
<td>+</td>
</tr>
<tr>
<td>Mass lesions</td>
<td>15%</td>
<td>-</td>
</tr>
<tr>
<td>Spinal cord involvement</td>
<td>5%</td>
<td>-</td>
</tr>
<tr>
<td>Elevated ESR</td>
<td><25%</td>
<td>+</td>
</tr>
<tr>
<td>Abnormal brain CT</td>
<td>50-60%</td>
<td>+</td>
</tr>
<tr>
<td>Abnormal MRI</td>
<td>75%</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 3: Published Clinical Research of PACNS in Adults

<table>
<thead>
<tr>
<th>Drug</th>
<th>Results</th>
<th>Strength of Evidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 163 patients</td>
<td></td>
<td>-Intermediate evidence - Cohort study (retrospective) (mostly same patients as cohort below- study extension)</td>
<td></td>
</tr>
<tr>
<td>G alone- IV M 1 g (3–17 pulses, median 5), then P 60 mg/day (median) for 0.4–107 mo (median 9 mo)</td>
<td>Favorable response 85% P alone; 80% C + P; increased mortality rate 27% of patients relapsed</td>
<td>Savesani 2015</td>
<td></td>
</tr>
<tr>
<td>N Therapy</td>
<td>Relapse less frequent in patients treated with C + P versus P alone (OR 2.9)</td>
<td>Savesani 2015</td>
<td></td>
</tr>
<tr>
<td>72 P + C</td>
<td></td>
<td>-Intermediate evidence - Cohort study (retrospective) (mostly same patients as cohort below- study extension)</td>
<td></td>
</tr>
<tr>
<td>2 C</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>51 C PO 150 mg/day (1–33 mo)</td>
<td>Higher disability scores and poor response to treatment associated with increasing age at time of diagnosis (OR 1.44), cerebral infarctions (OR 3.74), large vessel involvement (OR 6.14)</td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>23 C IV 1000 mg/mo (1–17 mo)</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>Azathioprine 100 mg/day (range 100–150 mg/day) for 0.4–76 mo (median 11 mo) + P (6 patients)</td>
<td>Favorable response 81%- G alone 85% - G + I Relapses occurred in 25%</td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>Mycophenolate 2,000 mg/day (median) + P (3 patients)</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>Rituximab 2 injections (1 patient)</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>N = 101 patients (over 21 years old period)</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>97 G</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>25–1 g M</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>72–60 mg P daily</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>49–1</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>46 C PO 150 mg/day or IV 1 g/m²</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
<tr>
<td>-3 azathioprine</td>
<td></td>
<td>Savesani 2007</td>
<td></td>
</tr>
</tbody>
</table>
Most of the medications have only intermediate or weak evidence consisting of several small retrospective cohort studies and case reports (Table 3). The vast majority of literature pertains to systemic or secondary vasculitis with PACNS treatment recommendations derived from systemic vasculitis. No clinical trials in PACNS have been conducted. There is one cohort of 101 patients and a second cohort that extends the follow-up and includes some additional patients (N=163) [1, 2]. These cohorts constitute intermediate evidence. All other literature retrieved regarding PACNS pharmacotherapy pertains to weak evidence.

<table>
<thead>
<tr>
<th>Medication</th>
<th>Treatment</th>
<th>Evidence</th>
<th>Study</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclophosphamide</td>
<td>M + C IV; 12 mo therapy (no dosages provided)</td>
<td>Intermediate evidence</td>
<td>Cohort study</td>
<td>De Boysson 2014</td>
</tr>
<tr>
<td></td>
<td>C IV + M (twice only-patient lost to follow-up) (dosages not provided)</td>
<td>Weak evidence</td>
<td>Case report</td>
<td>Rosenberg 2013</td>
</tr>
<tr>
<td></td>
<td>N=4; C + G</td>
<td>Weak evidence</td>
<td>Case report</td>
<td>Cupps 1983</td>
</tr>
<tr>
<td></td>
<td>Rituximab (2 IV doses of 1 g 2 weeks apart) + P (60 mg/day); P continued for 8 mo- lowered to 20 mg/day; maintenance therapy with methotrexate IM 15 mg weekly for 5 mo + P 10 mg/day</td>
<td>Weak evidence</td>
<td>Case reports (4)</td>
<td>Salvarani 2014</td>
</tr>
<tr>
<td></td>
<td>TNF blockers- patients resistant to G + C Infliximab 5 mg/kg single infusion Etanercept 50 mg/week (for 20 mo); then 25 mg once weekly (for 8 mo)</td>
<td>Weak evidence</td>
<td>Case reports (2)</td>
<td>Salvarani 2008</td>
</tr>
<tr>
<td></td>
<td>N=15 No dosages reported. 8 patients on G, 2 patients also on C (others not reported)</td>
<td>Weak evidence</td>
<td>Case series</td>
<td>Lie 1992</td>
</tr>
</tbody>
</table>

C = cyclophosphamide
P= prednisone PO
M= methylprednisolone IV
G= glucocorticoids
I= immunosuppressants

Cyclophosphamide and glucocorticoids remain the standard of care. Cytotoxic agents have been used for CNS vasculitis for decades based on therapeutic protocols in systemic vasculitides, anecdotal reports and cohort studies with favorable results [12]. The use of cyclophosphamide was first described in 1978 for use in secondary vasculitis [31]. The mechanism appears to be autoantibody suppression. However, no clinical trials have been conducted and it is unknown whether cyclophosphamide is the most effective and least toxic cytotoxic agent.
There is controversy regarding whether to administer glucocorticoids as monotherapy or to add cyclophosphamide. In 163 patients with PACNS, a favorable response was observed in 80% of patients treated with prednisone and cyclophosphamide versus 85% in patients treated with prednisone alone [2]. Prednisone alone was associated with more frequent relapses but relapses were not associated with rapid therapy withdrawal. It was noted that cerebral infarcts were associated with poor treatment responses. Predominant involvement of medium-sized vessels, as in our patient, may be less likely to respond to glucocorticoid monotherapy [25]. In addition to the presence of cerebral infarcts, large vessel involvement, focal neurological deficits and cognitive impairment are associated with increased mortality [1].

Prednisone should be initiated as soon as the diagnosis of PACNS is made at a single or divided dose of 1 mg/kg/day orally. If the patient does not respond promptly, cyclophosphamide should be added. In life-threatening or severe/progressive cases and/or for disease flares, pulse parenteral methylprednisolone at 1 g for three days may be used but no evidence exists this is more effective than oral prednisone [3].

In addition to controversy over whether to add C, controversy also exists as to whether cyclophosphamide should be given as continuous oral therapy or intravenous pulse therapy and no trials have been conducted to answer this question. The goal of pulse therapy is to minimize cyclophosphamide exposure. In systemic vasculitis trials, intravenous cyclophosphamide was as effective and produced less leucopenia than oral cyclophosphamide in inducing remission [31, 32]. Relapse rates were not reported in either study [31, 32]. In another study, a higher relapse rate was observed with IV pulse use and adverse effects were more frequent with continuous oral cyclophosphamide [33]. However, that study investigated relatively short courses of treatment. There is some evidence that prolonged treatment with low-dose pulse cyclophosphamide for 18–24 months may reduce the rate of relapse [34]. Again, all these studies are in systemic vasculitis, not PACNS.

The pulse dose is monthly infusions of 15 mg/kg or 500 to 1000 mg/m2 [24, 35]. The median oral dose of cyclophosphamide has been reported to be 150 mg/day with a range of 75–150 mg/day for a median duration of seven months with a range of 1–33 months [2]. An oral dosage of 2 mg/kg/day is frequently used. While the results of those trials are inconclusive, in other vasculitides, oral cyclophosphamide was successful when given for 3–6 months. Dosages should be adjusted for age and renal dysfunction [3].

Cyclophosphamide may result in life-threatening infections, cancer (particularly of the bladder or secondary lymphomas), hemorrhagic cystitis, and infertility. Bladder toxicity and myelodysplastic syndrome greatly increase with cumulative doses > 30 g [35]. Carcinoma of the renal pelvis was reported in a patient receiving long-term cyclophosphamide for cerebral vasculitis [36]. Immunosuppression from cyclophosphamide can result in serious, sometimes fatal infections and the degree of neutropenia correlates with reduced resistance to infections. Patients should receive pneumocystis prophylaxis with oral sulfamethoxazole/trimethoprim. Other supportive therapy includes antiemetics and normal saline hydration. While plasmapheresis is ineffective, intravenous immunoglobulin (IVIG) has been successful in some refractory patients [37].

While glucocorticoids remain the standard of care for remission, in patients unable to take cyclophosphamide, rituximab at a dose of 1 gm for two doses administered two weeks apart has been used. A double blind randomized trial in systemic vasculitis comparing rituximab to cyclophosphamide, found rituximab non-inferior to cyclophosphamide for remission induction and more effective for inducing remission of relapsing disease (67% versus 42%, p=0.01) [38].

After induction, many advocate switching to a low risk immunosuppressant to minimize cyclophosphamide exposure [3, 24, 29, 39]. The induction-maintenance strategy has been used in secondary vasculitis using azathioprine at 1–2 mg/kg/day [40]. In a recent study, azathioprine was used in 25% of patients for maintenance therapy, following cyclophosphamide induction. However, in PACNS a treatment course for 12–18 months, preferably 18, is used in most patients assuming relapses do not mandate prolonged therapy [3, 21]. Some continue maintenance therapy for 2–3 years [22]. Other agents include methotrexate at 20–25 mg/week, or mycophenolate mofetil at 1–2 g/day once remission has been obtained [3]. Comparison of methotrexate and azathioprine in patients with systemic vasculitis have not shown either to be superior, however, methotrexate does not penetrate the CNS well [29]. Methotrexate dosage should be reduced in patients with severe renal impairment [41].

In treatment-resistant cases, tumor necrosis factor α blockers (e.g. infliximab 5 mg/kg or etanercept 50 mg/ week) and mycophenolate mofetil (2 g/day) have been used. A relapse rate of approximately 25% may occur with serial MRI scan or MRA follow-up at 4th–6th week and at 3rd–4th month intervals thereafter [3, 16, 25].

CONCLUSION

Primary angiitis of the central nervous system is a rare but serious disease that presents both diagnostic and therapeutic challenges. Favorable neurological outcome is a realistic goal. Knowledge regarding the epidemiology, pathogenesis, diagnosis and management continues to evolve. Optimal management remains uncertain. Pulse cyclophosphamide treatment and identification of patients to initially receive immunosuppressant therapy and alternatives require further investigation.
Author Contributions
Martha M. Rumore – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Samantha Su – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published
Jake Pellinen – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2016 Martha M. Rumore et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES
30. Food and Drug Administration. [Available at: www.FDA.gov]
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.*

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.*

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

* Terms and condition apply. Please see Edorium Journals website for more information.

We welcome you to interact with us, share with us, join us and of course publish with us.