Stent thrombosis after switch from nongeneric to generic clopidogrel

George Stoupakis, Louis Teichholz

ABSTRACT

Introduction: The U.S. Food and Drug Administration recently approved generic versions of clopidogrel bisulfate which should lower the cost and improve compliance in patients requiring dual antiplatelet therapy post stent placement. However, there is marked inter-individual variability in the metabolism and intestinal absorption of clopidogrel. The different binders and fillers used in the generic versions can possibly affect absorption and reduce the bioavailability of the drug.

Case Report: We report a case of very late stent thrombosis in a patient eight days after the switch to generic clopidogrel bisulfate from branded clopidogrel (Plavix). The patient had received a sirolimus drug eluting stent almost three years prior to presentation and was on chronic dual antiplatelet therapy. Subsequent to the event, she was found to be a poor metabolizer of clopidogrel.

Conclusion: Although in most cases the use of generic clopidogrel is efficacious and safe, certain individuals, such as poor metabolizers, might be susceptible to increased clinical events when switching. We suggest any suspected cases should be reported to Medwatch so the clinical relevance could be determined.
Stent thrombosis after switch from nongeneric to generic clopidogrel

George Stoupakis, Louis Teichholz

ABSTRACT

Introduction: The U.S. Food and Drug Administration recently approved generic versions of clopidogrel bisulfate which should lower the cost and improve compliance in patients requiring dual antiplatelet therapy post stent placement. However, there is marked inter-individual variability in the metabolism and intestinal absorption of clopidogrel. The different binders and fillers used in the generic versions can possibly affect absorption and reduce the bioavailability of the drug. Case Report: We report a case of very late stent thrombosis in a patient eight days after the switch to generic clopidogrel bisulfate from branded clopidogrel (Plavix). The patient had received a sirolimus drug eluting stent almost three years prior to presentation and was on chronic dual antiplatelet therapy. Subsequent to the event, she was found to be a poor metabolizer of clopidogrel. Conclusion: Although in most cases the use of generic clopidogrel is efficacious and safe, certain individuals, such as poor metabolizers, might be susceptible to increased clinical events when switching. We suggest any suspected cases should be reported to Medwatch so the clinical relevance could be determined.

Keywords: Stent thrombosis, Antiplatelet therapy, Clopidogrel

INTRODUCTION

Clopidogrel is a thienopyridine which is orally administered in combination with aspirin to reduce the incidence of ischemic cardiovascular events in patients who undergo percutaneous coronary intervention (PCI). The U.S. Food and Drug Administration recently approved generic versions of clopidogrel bisulfate which should lower the cost and improve compliance in patients requiring dual antiplatelet therapy post-PCI. However, there is marked inter-individual variability in the metabolism and intestinal absorption of clopidogrel. The different binders and fillers used in the generic versions can possibly affect absorption and reduce the bioavailability of the drug. We report the first known case of very late stent thrombosis temporally related to the switch from branded clopidogrel (Plavix) to generic clopidogrel.

CASE REPORT

A 60-year-old female with a past medical history of myocardial infarction requiring stenting of the mid right coronary artery (RCA) with a Sirolimus drug eluting stent in 2009, presented to our emergency room in 2012, 1053 days after stent placement, with chest pain and diaphoresis and a new acute inferior wall ST-segment elevation myocardial infarction. Her electrocardiogram revealed a
new 2-mm ST elevations in the inferior leads (Figure 1). She was taken directly to the cardiac catheterization lab where she was found to have very late stent thrombosis of the mid RCA (Figure 2) and underwent successful thrombus aspiration and revascularization (Figure 3). At the time of presentation, the patient was on chronic dual antiplatelet therapy with aspirin 325 mg daily and generic clopidogrel bisulfate 75 mg daily. It was confirmed, 8 days prior to this event, the patient was switched from original branded clopidogrel bisulfate (Plavix, Bristol Meyers Squibb/Sanofi) to generic clopidogrel bisulfate (Teva Pharmaceutical Industries Ltd.). The patient was a former smoker and was known to be compliant with her medications and office visits. She clearly stated that she did not miss any doses of her antiplatelet therapy. She was not taking proton pump inhibitors. Subsequent to the event, clopidogrel 2C19 genotyping found her to be a poor metabolizer. She was discharged from the hospital on aspirin 325 mg daily and prasugrel 10 mg daily.

DISCUSSION

On 17th May 2012, the U.S. Food and Drug Administration approved generic versions of clopidogrel. Generic medications reduce the overall cost of medical care and the introduction of lower-cost generic clopidogrel might increase patient compliance and reduce premature discontinuation of therapy. Although there are studies to show bioequivalence of formulations of clopidogrel in healthy adults [1, 2], the ACCEL-GENERIC study is the only known prospective study which compared the degree of platelet inhibition between the original branded clopidogrel (Plavix) and a generic formulation of clopidogrel bisulfate in patients with coronary stents [3]. In this small study of 20 patients, all patients were treated with drug-eluting stents (DES) and received Plavix 75 mg daily for 6 months before being switched to generic clopidogrel. Platelet function measured at baseline and 30 days after generic clopidogrel replacement by light transmittance aggregometry (LTA) and the VerifyNow P2Y12 assay (Accumetrics, San Diego, CA, USA), demonstrated poor inter-therapy agreements between these two methods. Although there were no reported clinical events, because of this poor inter-therapy agreement, the authors concluded that there might be a
risk of ischemic events in some patients when switching to
generic clopidogrel. Furthermore, the authors stated that
physicians should be cautious when routinely switching
to generic clopidogrel due to cost, particularly during
the early phase of coronary stenting or Acute coronary
syndromes (ACS) [3].

There is marked inter-individual variability in the
metabolism of clopidogrel. Based on available data, the
prevalence of clopidogrel resistance is estimated at 4–30%
of patients treated with conventional doses of clopidogrel
[4]. Mechanisms that affect the efficacy of clopidogrel
include drug-drug interactions, polymorphisms of the
P2Y12 receptor gene, polymorphisms of the CYP3As, and
baseline platelet reactivity. Inter-individual variability
of the intestinal absorption of clopidogrel is also
considered to be an important determinant of response
variability to clopidogrel [5, 6]. Physiologic factors can
also affect the absorption of clopidogrel. For example,
pharmacokinetic studies in patients presenting with ST-
segment elevation myocardial infarction demonstrate
impaired bioavailability of clopidogrel due to impaired
intestinal absorption influenced by the physiologic state
of STEMI [7]. In addition, there is also marked intra-
individual variability in the antiplatelet effect of different
clopidogrel salt formulations. In a cross-over study of
healthy volunteers treated with clopidogrel hydrogen
sulfate (bisulfate) or clopidogrel besylate, some subjects
were observed to respond less to the besylate salt but better
to the hydrogen sulfate salt, while others had the reverse
pattern [8]. Therefore, some individuals may be sensitive
to changes in formulations and/or bioavailability. The
use of generic medications in cardiovascular disease has
been reviewed [9]. Generic medications are equivalent
chemically to their brand-name counterparts in terms
of active ingredients but may differ in features, such as
pill color and shape, inert binders and fillers [9]. It is
possible that the binder and filler used in our patient’s
generic formulation could have affected the intestinal
absorption and reduced the bioavailability of clopidogrel.
The FDA evaluated 2070 human studies comparing
the absorption of brand name and generic drugs. The
average difference in absorption between the generic
and brand names was 3.5% [10]. In drugs with a narrow
therapeutic index (NTI), this difference in absorption can
have clinical relevance. In addition, our patient’s STEMI,
occurring eight days after the switch to the generic
clopidogrel, coincides with the timing of washout of the
original branded clopidogrel (Plavix). The recovery trial
demonstrated that after discontinuation of clopidogrel,
\[\geq75\%\] of patients returned to baseline platelet reactivity
by washout day 5 and \[\geq90\%\] by day 6 [11]. In our patient,
the time frame between switching to generic clopidogrel
and the onset of the clinical event, suggest that there
could have been less antiplatelet effect due to the washout
of the original branded clopidogrel (Plavix) and possible
lower bioavailability of the generic clopidogrel.

Several factors most likely contributed to this patient’s
episode of stent thrombosis. Firstly, she was genetically
proven to be a poor metabolizer of clopidogrel. However,
it is most likely not due to clopidogrel resistance alone.
Since this event occurred almost three years after DES
stent placement and eight days after the switch to generic
clopidogrel, it appears that the branded clopidogrel
(Plavix) was effective in preventing stent thrombosis.
Current bioequivalence criteria, as proposed by the Food
and Drug Administration (FDA), require a 90% confidence
interval for the ratios of the geometric means (generic : reference) of the AUC and \(C_{\text{max}}\) to fall between 0.8 and
1.25 (80–125%). The use of the 80–125% reference range
has been criticized for drugs with a narrow therapeutic
index because a small change in systemic concentration of
these drugs can lead to a markedly different therapeutic
response or even toxicity [12]. The narrow therapeutic
index of clopidogrel may be an additional factor, as
a reduced bioavailability of generic clopidogrel and a
concurrent change in concentration may have rendered
the drug less effective. In our patient, because she was
found to be a poor metabolizer, her platelet inhibition
on the branded clopidogrel (Plavix) might have been on
the lower level of effectiveness, and the change to generic
clopidogrel, with the possibility of less bioavailability,
tipped the balance towards thrombosis. However, since
platelet function studies were not performed on our
patient before or after the switch to generic clopidogrel,
we do not have objective measurements to support our
hypothesis. It’s a speculation that the late thrombosis is
most likely secondary to changing to generic clopidogrel,
after three years of using Plavix, and not an incident
event.

CONCLUSION

We believe that, in general, the use of generic
clopidogrel in most cases will be efficacious and safe.
However, in some individuals there may be a variable
response in bioavailability which could alter the efficacy,
especially in those who are poor metabolizers. This is the
first known case of very late stent thrombosis temporally
related to the switch from branded clopidogrel (Plavix) to
generic clopidogrel. Therefore, physicians should have an
awareness of a potential for clinical events when switching
to generic clopidogrel. We suggest any suspected cases
to be reported to Medwatch. If this is more than just an
isolated case, it might be prudent to make an assessment
of genotyping, platelet function, lesion complexity and
clinical risk factors in patients when considering a switch
to generic clopidogrel.

Author Contributions
George Stoupakis – Substantial contributions to
congression and design, Acquisition of data, Drafting the
article, Revising it critically for important intellectual
content, Final approval of the version to be published
Stoupakis et al. 44

Louis Teichholz – Substantial contributions to conception and design, Acquisition of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© George Stoupakis et al. 2014; This article is distributed under the terms of Creative Commons attribution 3.0 License which permits unrestricted use, distribution and reproduction in any means provided the original authors and original publisher are properly credited. (Please see www.ijcasereportsandimages.com/copyright-policy.php for more information.)

REFERENCES
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open-access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Mentored Review Articles (MRA)
Our academic program “Mentored Review Article” (MRA) gives you a unique opportunity to publish papers under mentorship of international faculty. These articles are published free of charges.

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US

Edorium Journals: On Web
Browse Journals

This page is not a part of the published article. This page is an introduction to Edorium Journals and the publication services.